FOOD RESOURCES 2018. Issue N 10. Article 04

04. Mathematical model of work of a membrane hydraulically driven pump for foodstuffs dosing
 
I. Bernyk, V. Petrus
Pages: 34-40
 
Abstract
This article discusses the use of different types of pumps for pumping and dosing of liquid food products or their constituents. An improved mathematical model of dynamics of hydraulically driven membrane pump working process is proposed, which will enable studies of the general laws of hydrodynamic processes in pump and hydraulic system as a whole, to solve common tasks for their calculation and design, take into account the type of pumping medium. Results of the solution of differential equations of the mathematical model derived in this article can be recommended for practical implementation in the form of analytical curves for the development of methods of calculation for the creation of new structures and hydraulic pumps to assess their effectiveness when pumping various media in the food industry.
 
Key words:food industry, hydraulic drive, membrane pump, pumpingmedium, mathematical model
 
References
1. Kots I. V, and V. V. Petrus. 2012. Nasosy z gidravlichnym pryvodom dlya perekachuvannya vysokovyazkyx, agresyvnyx ta abrazyvovmisnyx seredovyshh – Pumps with hydraulic drive for pumping highly viscous, aggressive and abrasive media. Vinnytsia, UNIVERSUM-Vinnytsia, 196 (in Ukrainian).
2. Kots I. V, and V. V. Petrus. 2009. Patent na korysnu model 45361U Ukraina, MPK8 F04V 43/06. Hidropryvidnyi membrannyi nasos – Hydraulically driven membrane pump. Vinnytskyi natsionalnyi tekhnichnyi universytet. u200904792; 21 (in Ukrainian).
3. Gamynin N. S., Ju. K. Zhdanov, and D. L. Klimashin. 1979. Dinamika bystrodejstvujushhego gidravlicheskogo privoda – Dynamics of high-speed hydraulic drive. M.: Mashinostroenie, 80 (in Russian).
4. Navrockij K. L. 2003. Dinamika avtonomnogo gidroprivoda vozvratno-postupatel'nogo dvizhenija – Dynamics of autonomous reciprocating motion hydraulic drive. Vestnik mashinostroenija. 4:7–13 (in Russian).
5. Britvin L. N. 2004. Razrabotka nauchnyh osnov postroenija, rascheta i primenenija mnogofunkcional'nyh obyomnyh nasosnyh agregatov – Development of scientific principles for the construction, calculation and application of multifunctional volumetric pumping units. M. 450 (in Russian).
6. Kukoba A. T. 2000. Hidropryvodnyi rozchynonasos podviinoi dii.Poltava – Hydraulic drive dosing pump. 195 (in Ukrainian).
7. Shigapov A. B. A Hydraulic Drive of Booster Pumps. Thermal Engineering. – 2007. 54(3):240–241.
8. Savuliak V. I., I. V. Kots, and V. V. Petrus. 2012. Modeliuvannia robochoho protsesu hidroimpulsnoho pryvoda nasosa membrannoho typu – Mathematical model of dynamics of membrane pumping unit hydraulic impulsive drive. Promyslova hidravlika ta pnevmatyka. 2 (36):19–22 (in Ukrainian).
9. Petrus V. V, I. V. Kots, V. O. Pishenin, and S. M. Babii. 2014. Matematychna model dynamiky robochoho protsesu membrannoho hidropryvodnoho nasosa – Mathematical model of dynamics of hydraulically driven membrane pump working process. Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi: Naukovo-tekhnichnyi zbirnyk. 1(16):94–99 (in Ukrainian).
10. Rid R., Dzh. Prausnic, and T. Shervud. 1982. Svojstva gazov i zhidkostej – Properties of gases and liquids. L., Himija. 592 (in Russian).