- Деталі
- Опубліковано: Вівторок, 26 листопада 2019, 15:39
- Перегляди: 1551
07. PRINCIPAL BASICS OF ADVANCED BIOPACKAGING OF DAIRY PRODUCTS
https://doi.org/10.31073/foodresources2019-13-07
Kopylova Kateryna, Verbytskyi Serhii, Kozachenko Olga, Verbova Oksana
Pages: 69-86
Full article PDF
Abstract
The subject of research are packaging processes for milk and dairy products involving biodegradable packaging materials, in particular bioplastics, especially the barrier and other technological properties of biodegradable packaging materials and containers made from them for the implementation of packaging processes for various types of dairy products. The purpose of the study consists in proving the possibility and expediency of using biodegradable packaging materials, in particular bioplastics, for packaging various types of dairy products. Methods. During the research, a systematic approach was used to research factual materials, in particular scientific and scientific-practical literature, regulatory legal acts, regulatory documents and the like; abstract-logical approach to the synthesis of research results and the formulation of conclusions. The results of the study. Among the packaging materials used in the dairy industry, biodegradable materials include paper materials based on cellulose for liquid and dry dairy products, parchment wrappers for butter, curd products, etc. biodegradable plastics, used for packaging almost all types of dairy products, bio-based materials derived from renewable resources that can be used for dairy products with a limited shelf life. Biologically based materials must protect the dairy product from environmental influences and ensure the safety of quality during transportation and storage. The critical aspects are the mechanical and barrier properties of oxygen, carbon dioxide, water, light and odors. In addition, when choosing packaging materials for dairy products, safety aspects (migration, microbial growth), stability (heat resistance and chemical), technological requirements (suitability for welding and forming), convenience and compliance with marketing principles (communication, printing options) should be taken into account. The mechanical properties are crucial and must be adapted so that the dairy product is protected even during prolonged storage and transportation. The proper mechanical properties are characteristic of polylactide (PLA) in a semi-crystalline form, somewhat worse for polycaprolactone-starch (PCL). Although the use temperature for most dairy products is in the range of 0 ° C to 40 ° C. Hot-on-filling and sterilization can be used for liquid dairy products with a long shelf life. PLA containers remain stable only at 55 ° C, and materials based on starch-PCL mixtures occurred between 60 and 90 ° C. The expressive vapor barrier properties are crucial when packing dairy products, such as butter and cheese, where the key parameter is to cause the running to lose moisture and dry out the surface. In general, the packaging of products with a short shelf life is less critical, since the temperature is low and the shelf life is less than 10 days. Dairy products are often acidic, salty, or high in fat; it is important to evaluate chemical resistance, as is acceptable for PLA. Microorganisms can use packaging materials based on biological sources as energy sources. Films with PLA prevent the formation of molds, but packaging materials based on starch-PCL contribute to the growth of molds that can affect food products - which means it is advisable to include antimicrobial compounds in the material. Migration, the transfer of substances from packaging to basic products according to the standards should not exceed 10 mg / dm2. In the sense of migration, the categories of lactides, food and hydrolyzed starch, are safe. During biodegradation, enzymes hydrolytically decompose polymers. PLA are hydrolyzed without any help from hydrolytic enzymes in the presence of moisture. So, the analysis of scientific and technical information proves the possibility and expediency of using biodegradable materials, in particular bioplastics as innovative packaging materials for use in the dairy industry. These materials, primarily PLA, do not significantly differ, in mechanical and other technological properties, from traditional plastics made of hydrocarbon raw materials. Scope of research results. The results of the experiments will be used to improve the technologies of production of different types of dairy products, improve their food safety and quality, as well as reduce the anthropogenic load on the environment by ensuring the effective biodegradability of the packaging materials used and their packaging
Keywords: biodegradable materials, biopolymers, dairy products, packaging, polylactide, starch-based polymers, barrier properties
References
1. Zakon Ukrainy «Pro vnesennia zmin o deiakykh zakonodavchykh aktiv Ukrainy shchodo kharchovykh produktiv» [Law of Ukraine «On amending certain law documents of Ukraine on food products»] № 1602-VII of 22 July 2014. (2014). Vidomosti Verkhovnoi Rady – Gerald of Verkhovna Rada, 41-42, 20-24. [In Ukrinian].
2. Verbytskyi, S. B., Kopylova, K. V., Kozachnko, O. B., Verbova, O. V., Kos, T. S. (2019). Ekolohichna upakovka kharchovykh produktiv (vid teorii do praktyky) [Ecological packaging of food products (from theory to practice)]. Upakovka [Packaging], 4 (131), 30-34. [In Ukrinian]
3. Kopylova, K. V., Verbytskyi, S. B., Kos, T. S., Verbova, О. V., Kozachenko, O. B. (2018). Otsiniuvannia mozhlyvosti ta dotsilnosti vykorystannia ekilohichnykh plastmas dlia pakuvannia kharchovykh produktiv [Evaluating possibility and expediency of bioplastics to be used for packaging foods]. Zbirnyk naukovykh prats za materialamy 11th Mizhnarodnoi naukovo-practychnoi konferentsii «Problemy ta perspektyvy rozvytku akademichnoi ta universytetskoi nauky» 20-21 December 2018, Poltava: PolNTU, 140-145.
4. Vilpoux O., Averous L. (2004). Starch-based plastics In: Technology, use and potentialities of Latin American starchy tubers, 521-553.
5. Guilbert, S. (2000). Potential of the protein based biomaterials for the food industry. The Food Biopack Conference, Copenhagen (Denmark), 27-29 Aug, KVL.
6. Averous, L. (2002). Etude de système polymers multiphasés: approche des relations matériaux-procédés-propriétés. Dans: Habilitation à diriger des recherches, Université de Reims Champagne-Ardenne, 46.
7. Weber, C. J. (2000). Biobased packaging materials for the food industry: status and perspectives, a European concerted action, KVL.
8. Bunea, M. (2017). Studiul materialelor plastice biodegrsdabile pentru ambalarea produselor alimentare. Conferința științifică internațională«Perspectivele și Problemele Integrării în Spațiul European al Cercetării și Educației», Universitatea de Stat «B.P. Hasdeu» din Cahul, 7 iunie, I, 317-321.
9. de Moraes Crizel, T, Haas Costa, T. M., de Oliveira Rios, A., Hickmann Flores, S. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging, Industrial Crops and Products, 87, 218-228.
10. Santiago Santiago, M. (2015). Elaboración y caracterización de películas biodegradables obtenidas con almidón nanoestructurado. Universidad Veracruzana. – Xalapa de Enríquez, Veracruz, México, 119.
11. Debeaufort, F. Voilley, A. (1995). Effect of surfactants and drying rate on barrier properties of emulsified edible films. International Journal of Food Science & Technology, 30(2), 183-190.
12. Kopylova, K. V., Verbytskyi, S. B., Kozachenko, O. B., Verbova O. V., Kos, T. S. (2019). Innovatsiini biorozkladni materialy dlia pakuvannia produktsii molochnoi promyslovosti [Innovative biodegradable materials for packing products of dairy industry]. Materialy 8th Miznarodnoi spetsializovanoi naukovo-praktychnoi konferentsii «Resurso- ta energooshchadni tekhnologii vyrobnytstva i pakuvannia kharchovoi produktsii – osnovni zasady ii konkurentozdatnosti», 12 September 2019, Kyiv, NUFT, 150-152.
13. Jakobsen, M., Holm, V., Mortensen, G. (2008). Biobased packaging of dairy products. In «Environmentally compatible food packaging» (Chiellini E. ed.). Elsevier.
14. Marca Alderete, N. Y. (2015). Envases y embalajes para la industria láctea.
15. Haugaard, V. K., Udsen, A.-M., Mortensen, G., Høgh, L., Petersen, K., Monahan, F. (2001). Potential food applications of biobased materials. An EU-Concerted Action Project. Starch/Starke, 53,189-200.
16. Robertson, G. L. (2006). Edible and biobased food packaging materials. In Food Packaging: Principles and Practice. Taylor & Francis. New York. Chapter 3.
17. Van Tuil, R., Fowler, P., Lawther, M., Weber, C. J. (2000). Properties of biobased materials. In: Weber C J (Ed.). Biobased Packaging Materials for the Food Industry. Status and Perspectives. KVL Department of Dairy and Food Science, Frederiksberg, 13-41.
18. Södergård, A., Stolt M. (2002). Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci,. 27, 1123-1163.
19. Parris, N., Coffin, D. R., Joubran, R. F., Pessen, H. (1995). Composition factors affecting the water vapour permeability and tensile properties of hydrophilic films. J Agric Food Chem, 43,1432-1435.
20. Sinclair, R. G. (1996) The case for polylactic acid as a commodity packaging plastic. JMS - Pure Appl Client, A33 (5). 585-597.
21. Kharas, H., Sanchez-Riera, F., Severson, D. K. (1994). ,'Polymers of lactic acid. In Mobley D P (Ed.). Plastics from Microbes. Microbial Synthesis of Polymers and Polymer Precursors. Carl Hanser Verlag. Munich. Chapter 4., 93-137.
22. Auras, R., Harte, B., Selke, S., Hernanbez, R. (2003). Mechanical, physical, and barrier properties of poly(lactide) films, J Plastic Film Sheeting, 19, 123-135.
23. Ikada, Y., Tsuji, H. (2000). Biodegradable polyesters for medical and ecological applications, Macromol Rapid Commun. 21.117-132.
24. Petersen, K., Nielsen, P. V., Olsen, M. B. (2001). Physical and mechanical properties of biobased materials. Starch/Starke, 53, 356-361.
25. Krochta, J. M., De Mulder-Johnston, C. (1996). Biodegradable polymers from agricultural products. In Fuller G, McKeonT A and Bills D D (Eds), Agricultural Materials as Renewable Resources. ACS Symposium Series. American Chemical Society. Washington DC, 121-140.
26. Ahvenainen, R., Myllarinen, P., Poutanen, K. (1997). Prospects of using edible and biodegradable protective films for foods. The European Food and Drink Review, Summer, 73-80.
27. Psomiadou, E., Arvanitoyannis, I., Billaderis, C. G., Ogawa, H., Kawasaki, N. (1997), Biodegradable films made from low density polyethylene (LDPE). wheat starch and soluble starch for food packaging applications: Part 2, Carbohydr Polym, 33. 227-242.
28. Arvanitoyannis, I., Billaderis, C. G., Ogawa, H., Kawasaki, N. (1998). Biodegradable films made from low-density polyethylene (LDPE). rice starch and potato starch for food packaging applications: Part 1, Carbohydr Polym, 36,89-104.
29. Ho, K.-L. G., Pometto III, A. L., Hinz, P. N. (1999), Effects of temperature and relative humidity on polylactic acid plastic degradation, J Environ Polym Degrad. 7 (2), 83-92.
30. Ho, K.-L. G., Pometto III, A. L., Hinz P. N., Gadea-Rivas A., Briceno, J. A., Rojas A. (1999). Field exposure study of polylactic acid (PLA) plastic films in the banana fields of Costa Rica. J Environ Polym Degrad. 7 (4), 167-172.
31. Holm, V. K., Ndoni, S., Risbo, J. (2006). The stability of poly(lactic acid) packaging films as influenced by humidity and temperature. J Food Sci, 71 (2), E40-E44.
32. Visakh, P.M. Polyhydroxyalkanoates (PHAs), their Blends, Composites and Nanocomposites: State of the Art, New Challenges and Opputunities, Polyhydroxyalkanoates (PHAs) based Blends, Composites and Nanocomposites, 2014.
33. Gontard, N., Thibault, R., Cuq, B., Guilbert, S. (1996). Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. J Agric Food Chem, 44.1064-1069.
34. Arvanitoyannis, I., Psomiadou, E., Billaderis, C. G., Ogawa H., Kawasaki, N., Nakayama, A. O. (1997). Biodegradable films made from low density polyethylene (LDPE). ethylene acrylic acid (EAA), polycaprolactone (PCL) and wheat starch for food packaging applications: Part 3’. Starch/Starke, 49 (7/8), 306-322.
35. Kittur, F., Kumar, K. R., Tharanthan, N. (1998). Functional packaging properties of chitosan films. Z Lebensm Unters Forsch, A. 206., 4-47.
36. Barron, C., Varoquaux, P., Guilbert, S., Gontard, N., Gouble, B. (2001). Modified atmosphere packaging of cultivated mushroom (Agaricus bisporus L.) with hydrophilic films. J Food Sci, 66 (8), 251-255.
37. Lehermeier, H. J., Dorgan, J. R., Way, J. D. (2001), Gas permeation properties of poly(lactic acid). J Membr Sci, 190 (2), 243-251.
38. Auras, R. A., Singh, S. P., Singh, J. J. (2005). Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Pack Technol Sci, 18, 207-216.
39. Plackett, D. V., Holm, V. K., Johansen, P., Ndoni, S., Nielsen, P. V., Sipilainen-Malm, T., Södergård, A., Vertichel, S. (2006). Characterization of i.-polylactide and l- polylactide-polycaprolactone co-polymer films for use in cheese-packaging applications, Pack Technol Sci, 19, 1-24.
40. Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B. Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends Food Sci Technol, 10, 52-68.
41. Guilbert, S. (2000). Edible films and coatings and biodegradable packaging. Bull Int Dairy Fed. 346,10-16.
42. Kantola, M, Helen, H. (2001). Quality changes in organic tomatoes packaged in biodegradable plastic films, J Food Qual., 24, 167-176.
43. Garcia, M. A., Pinotti, A., Zaritzky, N. E. (2006), Physicochemical, water vapour barrier and mechanical properties of corn starch and chitosan composite films. Starch/Starke, 58, 453-463.
44. Despond, S., Espuche, E, Domard, A. (2001), Water sorption and permeation in chitosan films: relation between gas permeability and relative humidity. J Polym Sci, 39, 3114-3127.
45. Muramatsu, M., Okura, M., Kuboyama, K., Ougizava, T., Yamamoto, T., Nishihara, Y., Saito, Y., Ito, K., Hirata, K., Kobayashi, Y. (2003). Oxygen permeability and free volume hole size in ethylene-vinyl alcohol copolymer films: temperature and humidity dependence. Radial Phys Chem, 68, 561-564.
46. Auras, R., Harte, B., & Selke, S. (2004). Effect of water on the oxygen barrier properties of poly (ethylene terephthalate) and polylactide films. Journal of Applied Polymer Science, 92(3), 1790-1803..
47. Martin, O., Schwach, E., Averous, L., Couturier, Y. (2001). Properties of biodegradable multilayer films based on plasticized wheat starch. Starch/Starke, 53, 372-380.
48. Fang, J. M., Fowler, P.A., Escrig, C., Gonzalez, R. Costa, J. A., Chamudis, I. (2005). Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohydr Polym., 60, 39-42.
49. Fischer, S., Vlieger, de J., Kock, T., Gilbertis, J., Fischer, H., Batenburg, L. (2000). Green composites – the materials of the future – a combination of natural polymers and inorganic particles. In: Weber C J (Ed.), Conference Proceedings, The Food Biopack Conference. Copenhagen, 27-29 August, p. 109.
50. Johannson, K. S. (2000). Improved barrier properties of renewable and biodegradable polymers by means of plasma deposition of glass-like SiOx coatings. In: Weber C J (Ed.). Conference Proceedings, The Food Biopack Conference. Copenhagen. 27-29 August. 110.
51. Ray, S., Quek, S. Y., Easteal, A., Chen, X. D. (2006). The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng, 2 (4). article 5.1-11.
52. Auras, R., Harte, B., Selke, S. (2006). Sorption of ethyl acetate and D-limonene in poly(lactide) polymers. J Sci Food Agric., 86, 648-656.
53. Marboe, T. (2006). Evaluation of polylactide vs. polyethylene terephthalate bottles for packaging of canola oil. Master Thesis. Department of Food Science. The Royal Veterinary and Agricultural University, Denmark.
54. Bergenholtz, K. P., Nielsen, P. V. (2002). New improved method for evaluation of growth by food related fungi on biologically derived materials. J Food Sci., 67 (7), 2745-2749.
55. Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filler Jr., R. J, Ladu, B. N., Pariza, M. W. (1995). Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxic., 33 (4), 273-283.
56. Commission Directive 2002/72/EC relating to plastics materials and articles intended to come into contact with foodstuffs as amended by 2004/19/EC.
57. Selin, J. F. (1997). Polylactides and their applications. In: Technology Programme Report 13/97. Technology Development Centre Tekes. Helsinki, pp. 111-127.
58. Kale, G, Auras, R., Singh, S. P. (2007). Comparison of the degradability of poly(lactide) packages in composting and ambient exposure condition'. Pack Technol Sci., 20(1), 49-70.
59. Ho, K.-L. G., Pometto III, A. L. (1999). Effects of electron-beam irradiation and ultraviolet light (365 nm) on polylactic acid plastic films. J Environ Polym Degrad, 7 (2), 93-100.
60. Consonni E. (2016). Milk in cardboard packaging: is it possible? Paper Industry World, 12 October.