- Деталі
- Опубліковано: Вівторок, 26 листопада 2019, 15:44
- Перегляди: 1432
02. ANALYSIS OF THE USE OF EXOPOLYSACCHARIDES PRODUCING STARTER CULTURES IN THE FERMENTATION OF MILK
https://doi.org/10.31073/foodresources2019-13-02
Bodnarchuk Oksana, Yakubenko Olga, Petrov Pylyp, Nasyrova Hiuzel
Pages: 23-34
Full article PDF
Abstract
Among the products of metabolism of lactic acid bacteria, exopolysaccharides (EPSs) have received increasing attention in recent years, due to their potential benefit and role in the structure of fermented milk products similar to gel-forming agents. Exopolysaccharides of bacteria have unique physic-chemical, biological and functional-technological properties. Owing to their suspending and emulsifying properties and high water-binding power EPSs can modify the rheological characteristics of products and contribute to reducing the amount of segregated serum during production and in finished products, thereby increasing their shelf life. Also, the EPS capsule of lactobacilli is a factor involved in the mechanism of cell resistance to bacteriophage adhesion and subsequent cell lysis. The use of strains of lactic acid bacteria capable for producing EPSs can increase the resistance to bacteriophages. EPSs synthesized by lactobacteria perform a number of important biological functions in the human body – they take part in activating the body's defenses, affecting the concentration of cytokines in the blood and increasing the body's resistance to viral and bacterial infections, and have the ability to bind free radicals, which determines their antioxidant activity and also has anti-inflammatory and antitumor action. Analysis of the publications showed that the manifestation of the property for the synthesis of EPS in lactobacteria is observed when the conditions of cultivation are changed – changes in temperature or composition of the nutrient medium. The use of EPS-producing bacteria strains in the production of dairy products, can improve their rheological properties, increase the mass fraction of moisture and yield of finished products, especially in the case of low fat cheeses. Exopolysaccharides can be not only a natural alternative source of nutritional supplements, but also promote the adhesion of beneficial microorganisms on the intestinal walls
Keywords: biosynthesis of exopolysaccharides, starter cultures, fermentation of milk
References
1. Pravdivtseva M. I., Gorel'nikova E. A., Abrosimova O. V. (2011). Otsenka vliyaniya ekzopolisakharidov molochnokislykh bakteriy roda Lactobacillus na fagotsitarnuyu aktivnost' makrofagov belykh myshey [Assessment of the effect of exopolysaccharides of lactic acid bacteria of the genus Lactobacillus on the phagocytic activity of macrophages of white mice ]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk [Bulletin of the Samara Scientific Center of the Russian Academy of Sciences]. № 13., 1-5 [in Russian].
2. Rozhkova T. V. Biotekhnologiya startovikh kul'tur na osnove molochnokislikh bakterіy, sinteziruyushchikh polisakharidy [Biotechnology of starter cultures based on lactic acid bacteria synthesizing polysaccharides] : dis. kand. tekh. nauk: 05.18.07 Moskva, 2006. 23 [in Russian].
3. Abid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M. M., ... & Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International journal of biological macromolecules, 108, 719-728.
4. Colliec-Jouault, S., Roger, O., Ratiskol, J., Helley, D., Sinquin, C., Bros, A., ... & Guezennec, J. (2003). Bioactive bacterial exopolysaccharides: modification, characterization and preliminary results on biological activity. Actes de colloques-IFREMER, 141-147.
5. Broadbent, J., McMahon, D., Welker, D., Oberg, C., & Moineau, S. (2003). Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. Journal of dairy science, 86(2), 407-423.
6. Ermol'eva Z., Vaysberg G. (1976) Stimulyatsiya nespetsificheskoy rezistentnosti organizma i bakterial'nye polisakharidy [Stimulation of nonspecific body resistance and bacterial polysaccharides]. Moscow: Meditsina [Medicine], 184 [in Russian].
7. Kichemazova N. (2019). Ekzopolisakharidy bakteriy rodov Xanthobacter i Ancylobacter: kharakteristika i ikh biologicheskoe svoystva [Exopolysaccharides of bacteria of the genera Xanthobacter and Ancylobacter: characteristics and their biological properties] Doctor thesis, Saratov, 94 .
8. Zakharova I., Kosenko L. (1982). Metody izucheniya mikrobnykh polisakharidov [Methods for the study of microbial polysaccharides]. Kiev: Naukova dumka [Scientific Thought], 192 [in Russian].
9. Kitazawa, H., Ishii, Y., Uemura, J., Kawai, Y., Saito, T., Kaneko, T., ... & Itoh, T. (2000). Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiology, 17(1), 109-118.
10. Makino, S., Ikegami, S., Kano, H., Sashihara, T., Sugano, H., Horiuchi, H., & Oda, M. (2006). Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 89(8), 2873-2881.
11. Abramova A. (2009). Issledovanie shtammov termofil'nogo streptokokkov pokolichestvu sintezirovaniya EPS i polucheniyu pov'shennoy vyazkosti [Investigation of strains of thermophilic streptococci to the generation of EPS synthesis and obtaining increased viscosity]. Nauchnoe obespechenie molochnoy promyshleshyusti [Scientific support for the dairy industry], 4-7 [in Russian].
12. Chen, W., Zhao, Z., Chen, S., & Li, Y. (2008). Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresource technology, 99(8), 3187-3194.
13. Abramova A. Semeshkhina V.F. (2008). Podbor shtammov termofil'nogo streptokoka produtsirovanogo EPS dlya uluchsheniya kachestva yogurt [Selection of thermophilic streptococcus strains produced by EPS to improve the quality of yogurt]. Zhivye sistemy i biologicheskaya bezopasnost' naseleniya [Living Systems and Biosafety of The Population], 171-173 [in Russian].
14. Pravdivtseva M., Karpunina L., Nurmukhamedov A. Vliyanie laksarana Z na mikrofloru tolstogo otdela kishechnika samok krys v usloviyakh immobilizatsionnogo stressa [The effect of laxaran Z on the microflora of the large intestine of female rats under conditions of immobilization stress]. Uspekhi sovremennogo estestvoznaniya [The Successes of Modern Science]. 2009. № 8. S. 101-101 [in Russian].
15. De Vuyst, L., De Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 11(9), 687-707.
16. Nagaoka, M., Hashimoto, S., Watanabe, T., Yokokura, T., & Mori, Y. (1994). Anti-ulcer effects of lactic acid bacteria and their cell wall polysaccharides. Biological and Pharmaceutical Bulletin, 17(8), 1012-1017.
17. Harutoshi, T. Exopolysaccharides of lactic acid bacteria for food and colon health applications (2013). Lactic acid bacteria-R & D for food, health and livestock purposes. IntechOpen, P515-538.
18. Mayo, B., Aleksandrzak-Piekarczyk, T., Fernández, M., Kowalczyk, M., Álvarez-Martín, P., & Bardowski, J. (2010) Updates in the metabolism of lactic acid bacteria. Dalam: Mozzi, F., Raya, R, R, dan Vignolo, GM (ed). Biotechnology of lactic acid bacteria: Novel Application, P.3-33.
19. Cerning, J. (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiology Reviews. 7(1-2), P.113-130.
20. Sutherland, I. (1998). Novel and established applications of microbial polysaccharides. Trends in biotechnology, 16(1), 41-46.
21. Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E., & Matar, C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36(5-6), 254-260.
22. Ricciardi, A., & Clementi, F. (2000). Exopolysaccharides from lactic acid bacteria: structure, production and technological applications. Italian Journal of Food Science, 12(1), 23-45.
23. Stingele F.,Neeser J., Mollet B. Nestle´ (1996). Identification and Characterization of the EPS (Exopolysaccharide). Gene Cluster from Streptococcus thermophilus Sfi6. Journal of Bacteriology. Mar. 1996. P. 1680–1690.
24. Jung, H., Hong, J., Park, S., Park, B., Nam, D., & Kim, S. (2007). Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnology and Bioprocess Engineering, 12(6), 713-719.
25. Petersen, B., Dave, R., McMahon, D., Oberg, C., & Broadbent, J. Influence of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus on Mozzarella cheese and cheese whey. Journal of Dairy Science. 2000. 83(9), P. 1952-1956.
26. McMahon, D., & Oberg, C. Influence of fat, moisture and salt on functional properties of Mozzarella cheese. Australian Journal of Dairy Technology. 1998. 53(2), P. 98.
27. Perry, D., McMahon, D., & Oberg, C. Effect of exopolysaccharide-producing cultures on moisture retention in low fat Mozzarella cheese. Journal of Dairy Science. 1997. 80(5), P. 799-805.