11. PCR-SCREENING OF BACTERIAL CULTURES FOR ENRICHMENT OF THE ESSENTIAL NUTRІENTS LEVEL IN ORGANIC FERMENTED DAIRY PRODUCT
 
Zhukova Ya., Petrov P., Danylenko S., Shuhai M., Chorna N., Vakulenko M.
Pages: 94-112
 
Abstract
The transformation of livestock farming, by reducing or eliminating grazing and significantly increasing of the proportion of silage and concentrated feed in the diet leads to decreasing of polyunsaturated fatty acids content (PUFA) in milk. The increasing in the proportion of rough feed and especially green fodder, grazing contributes to increasing of the content of PUFA, conjugates of linoleic acid (CLA) and other essential nutrients compared to the silage-haylage type of feeding. At the same time, with the help of bacteria with ability to synthesize the CLA, it is possible to obtain dairy products enriched with CLA, without the use of chemical additives, prohibited in organic production. The purpose of this work was to evaluate the physico-chemical and biochemical parameters of organic milk from farms with different types of feeding, screening of bacterial cultures capable of CLA-synthesis, and investigating the effect of selected bacterial cultures on fermentation of organic milk from farms with different types of feeding. The results of the conducted research indicate that the developed sequences for PCR-identification of the ability of strains Lactobacillus plantarum and Bifidobacterium breve to synthesize the CLA allow selected bacterial cultures for fermentation of organic milk in order to increase the CLA content in the fermented milk product. The conducted fermentation showed that using of the fermentation culture «Bifidocomplex», which contained bacteria Bifidobacterium breve, which are capable for the synthesis of CLA, increased the content of CLA in the fermented milk up to 0.882%, which was the highest value among all used cultures and types of milk. The ratio of the content of CLA to the content of linoleic acid, which characterizes the conversion rate of linoleic acid, in the fermented O1 milk with using of culture «Bifidocomplex» was by 21.3% higher compared to the culture «Iprovit» and 12.9% compared with the mixture of cultures «Iprovit» + «Lyofast LPRA», which contained bacteria Lactobacillus plantarum, which are capable for the synthesis of CLA. During fermenting O2 milk with the culture «Bifidocomplex», this ratio was higher by 17.1% and 9.5%, respectively.
 
Key words: bacterial cultures, essential nutrients, fatty acid composition, polymerase chain reaction, organic fermented milk product, PCR-screening
 
References
1. Hennessy A., Ross R., Devery R., Stanton C. (2011). The health promoting properties of the conjugated isomers of αlinolenic acid. Lipids, 46(2), 105119.
2. Farmani J., Safari M., Roohvand F., Razavi S., Aghasadeghi M., Noorbazargan H. (2010). Conjugated linoleic acidproducing enzymes: A bioinformatics study. European journal of lipid science and technology, 112(10), 10881100.
3. Bhattacharya A., Banu J., Rahman M., Causey J., Fernandes G. (2006). Biological effects of conjugated linoleic acids in health and disease. The Journal of nutritional biochemistry, 17(12), 789–810.
4. Ip C., Singh M., Thompson H., Scimeca J. (1994). Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer research, 54(5), 1212–1215.
5. Kamphuis M., Lejeune M., Saris W., Westerterp-Plantenga M. (2003). The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. International journal of obesity, 27(7), 840.
6. Rodríguez-Alcalá L., Villar-Tajadura A., Juarez M., Fontecha J. (2013). Commercial conjugated linoleic acid (CLA) fortified dairy products. In Handbook of Food Fortification and Health. Humana Press, New York. P. 173–184.
7. Roach J., Mossoba M., Yurawecz M., Kramer J. (2002). Chromatographic separation and identification of conjugated linoleic acid isomers. Analytica Chimica Acta, 465(1–2), 207–226.
8. Schmid A., Collomb M., Sieber R., Bee G. (2006). Conjugated linoleic acid in meat and meat products: A review. Meat Science,73(1), 29–41.
9. Fritsche J., Rickert R., Steinhart H., Yurawecz M., Mossoba M., Sehat N., Ku Y. (1999). Conjugated linoleic acid (CLA) isomers: formation, analysis, amounts in foods, and dietary intake. Lipid/Fett, 101(8), 272–276.
10. Collomb M., Schmid A., Sieber R., Wechsler D., Ryhänen E. (2006). Conjugated linoleic acids in milk fat: Variation and physiological effects. International dairy journal, 16(11), 1347–1361.
11. Zhukova Ya., Petrov P., Klimenko L., Demikhov Yu. (2019). Chemometric Approach Based on Fatty Acid Composition and Δ13C Analysis for Verification of Organic Raw Milk from Cows With Different Diet. Carpathian Journal of Food Science and Technology, Vol.11(1), 203–217.
12. Gorissen L., Leroy F., De Vuyst L., De Smet S., Raes K. (2015). Bacterial production of conjugated linoleic and linolenic acid in foods: a technological challenge. Critical reviews in food science and nutrition, 55(11), 1561–1574.
13. Sieber R., Collomb M., Aeschlimann A., Jelen P., Eyer H. (2004). Impact of microbial cultures on conjugated linoleic acid in dairy products – a review. International Dairy Journal, 14(1), 1–15.
14. Dhiman T., Nam S., Ure A. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Critical reviews in food science and nutrition, 45(6), 463–482.
15. Campbell W., Drake M., Larick D. (2003). The Impact of Fortification with Conjugated Linoleic Acid (CLA) on the Quality of Fluid Milk. Journal of Dairy Science, 86(1), 43–51.
16. Precht D., Molkentin J., Vahlendieck M. (1999). Influence of the heating temperature on the fat composition of milk fat with emphasis on cis/transisomerization. Food/Nahrung, 43(1), 25–33.
17. Ryhänen E., Tallavaara K., Griinari J., Jaakkola S., Mantere-Alhonen S., Shingfield K. (2005). Production of conjugated linoleic acid enriched milk and dairy products from cows receiving grass silage supplemented with a cereal-based concentrate containing rapeseed oil. International Dairy Journal, 15(3), 207–217.
18. Gonzalez S., Duncan S., O’keefe S., Sumner S., Herbein J. (2003). Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles. Journal of Dairy Science, 86(1), 70–77.
19. Kepler C., Hirons K., McNeill J., Tove S. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. Journal of Biological Chemistry, 241(6), 1350–1354.
20. Palmquist D. (2006). Milk fat: Origin of fatty acids and influence of nutritional factors thereon. In Advanced Dairy Chemistry Volume 2 Lipids (pp. 43–92). Springer, Boston, MA.
21. Jenkins T. (1993). Lipid metabolism in the rumen. Journal of Dairy Science, 76(12), 3851–3863.
22. Kim Y., Liu R., Bond D., Russell J. (2000). Effect of linoleic acid concentration on conjugated linoleic acid production by butyrivibrio fibrisolvensA38. Applied and Environmental Microbiology, 66(12), 5226–5230.
23. Adamczak M., Bornscheuer U., Bednarski W. (2008). Properties and biotechnological methods to produce lipids containing conjugated linoleic acid. European journal of lipid science and technology, 110(6), 491–504.
24. Gorissen L., Raes K., Weckx S., Dannenberger D., Leroy F., De Vuyst L., De Smet S. (2010). Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Applied microbiology and biotechnology, 87(6), 2257–2266.
25. Zeng Z., Lin J., Gong, D. (2009). Identification of lactic acid bacterial strains with high conjugated linoleic acidproducing ability from natural sauerkraut fermentations. Journal of food science, 74(4), M154M158.
26. Akalın A., Tokuşoğlu Ö., Gönç S., Aycan, Ş. (2007). Occurrence of conjugated linoleic acid in probiotic yoghurts supplemented with fructooligosaccharide. International Dairy Journal, 17(9), 1089–1095.
27. Xu S., Boylston T., Glatz B. (2005). Conjugated linoleic acid content and organoleptic attributes of fermented milk products produced with probiotic bacteria. Journal of Agricultural and Food Chemistry, 53(23), 9064–9072.
28. Gorissen L., Raes K., De Smet S., De Vuyst L., Leroy F. (2012). Microbial production of conjugated linoleic and linolenic acids in fermented foods: Technological bottlenecks. European journal of lipid science and technology, 114(4), 486–491.
29. Florence A., Béal C., Silva R., Bogsan C., Pilleggi A., Gioielli L, Oliveira M. (2012). Fatty acid profile, trans-octadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food chemistry, 135(4), 2207–2214.
30. Florence A., Oliveira R., Silva R., Soares F., Gioielli L., Oliveira M. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. Lwt-Food Science and Technology, 49(1), 89–95.
31. Florence A., Da Silva R., do Espírito Santo A., Gioielli L., Tamime A., De Oliveira M. (2009). Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures. Dairy science & technology, 89(6), 541–553.
32. Zhukova Ya., Vakulenko M., Petrov P., Semenivska O. Patent UA 116515 S2 Sposib vyznachennia kultury Bifidobacterium breve, zdatnoi do syntezu koniuhativ linolevoikysloty, za dopomohoiu pary spetsyfichnykh olihonukleotydnykh praimeriv metodom polimeraznoi lantsiuhovoi reaktsii [Determination of the culture of Bifidobacterium breve, enable to the synthesis of conjugate of linoleic acid, with the help of specific oligonucleotide primers by the method of polymerase chain reaction]. 26.03.2018, Biul.No 6
33. Zhukova Ya., Vakulenko M., Petrov P., Semenivska O. Patent UA 116514 S2 Sposib vyznachennia kultury Lactobacillus plantarum, zdatnoi do syntezu koniuhativ linolevoi kysloty, za dopomohoiu pary spetsyfichnykh olihonukleotydnykh praimeriv metodom polimeraznoi lantsiuhovoi reaktsii [Determination of the culture of Lactobacillus plantarum, enable to the synthesis of conjugate of linoleic acid, with the help of specific oligonucleotide primers by the method of polymerase chain reaction]. 26.03.2018, Biul.No 6.
34. Lee S., Vedamuthu E., Washam C., Reinbold G. (1974). An agar medium for the differential enumeration of yogurt starter bacteria. Journal of Milk and Food Technology, 37(5), 272–276.
35. DSTU ISO 8968–2:2005 (IDF 20–2:2001) Moloko. Vyznachennia vmistu azotu. Chastyna 2. Metod iz vykorystanniam bloku dlia spaliuvannia (makrometod): chynnyi z 01.07.2007 [Milk – Determination of nitrogen content. Part 2: Block-digestion method (Macro method)]. K.: DP «UkrNDNTs», 2007. – 14 s.
36. DSTU ISO 8968-4:2005 (IDF 20–4:2001) Moloko. Vyznachennia vmistu azotu. Chastyna 4. Metod vyznachennia nebilkovoho azotu: chynnyi z 01.07.2007 [Milk – Determination of nitrogen content. Part 4: Determination of non–protein–nitrogen content]. K.: DP «UkrNDNTs», 2007. 11 s.
37. Zhukova Ya., Petrov P., Klimenko L. (2017). Express Method Of Quantitative Determination Of Urea In Milk. Товари і ринки [Markets and Comodities], 2, 17–35
38. GOST 3624-92. Moloko i molochnye produkty. Titrimetricheskie metody opredelenija kislotnosti: dejstvuet ot 01.01.1994 [Milk and dairy products. Titrimetric methods for the determination of acidity]. M.: «Standartinform», 2009. 8 s. с.
39. Inihov G., Brio N. (1971). Metody analiza moloka i molochnyh produktov [Methods of analysis of milk and dairy products]. M.: Pishhevaja promyshlennost', 275.
40. DSTU ISO 14156:2005 (IDF 172:2001). Moloko ta molochni produkty. Metody ekstrahuvannia lipidiv ta liporozchynnykh spoluk: chynnyi z 01.07.2007 [Milk and milk products – Extraction methods for lipids and liposoluble compounds]. K.: DP «UkrNDNTs», 2007. 10 s.
41. DSTU ISO 15884/IDF 182:2008 Zhyr molochnyi. Vyznachennia zhyrnokyslotnoho skladu metodom hazoridynnoi khromatohrafii: chynnyi z 01.01.2011 [Milk fat – Preparation of fatty acid methyl esters]. K.: DP «UkrNDNCz», 2011. 9 s.
42. DSTU ISO 15885/IDF 184:2008 Zhyr molochnyi. Vyznachennia zhyrnokyslotnoho skladu metodom hazoridynnoi khromatohrafii: chynnyi z 01.01.2011 [Milk fat – Determination of the fatty acid composition by gas–liquid chromatography]. K.: DP «UkrNDNTs», 2011. 12 s.
43. Kay J., Roche J., Kolver E., Thomson N., Baumgard L. 2005. A comparison between feeding systems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acid profiles in dairy cows. Journal of Dairy Research, 72(3), 322–332.
44. Ulbricht T., Southgate D. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985–992.
45. Zhukova Ya., Petrov P. (2018). Vplyv typu hodivli koriv na parametry yakosti orhanichnoho moloka. [Influencing the type of year on the parameters of organic milk]. Prodovolchi resursy [Food Resources], 10, 111–122.
46. Shidlovskaja V. (2008). Nebelkovye azotistye veshhestva i ih rol v ocenke kachestva moloka [Non-protein nitrogenous substances and their role in assessing the quality of milk.] Molochnaja promyshlennost [Dairy industry], (3), 48–51.

                       

naas logo mes logo